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Nonlinear transfer function encodes synchronization in a neural network
from the mammalian brain
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Synchronization is one of the mechanisms by which the brain encodes information. The observed synchro-
nization of neuronal activity has, however, several levels of fluctuations, which presumably regulate local
features of specific areas. This means that biological neural networks should have an intrinsic mechanism able
to synchronize the neuronal activity but also to preserve the firing capability of individual cells. Here, we
investigate the input-output relationship of a biological neural network from developing mammalian brain, i.e.,
the hippocampus. We show that the probability of occurrence of synchronous output gethiithh consists
in stereotyped population bursts recorded throughout the hippocarigpaacoded by a sigmoidal transfer
function of the input frequency. Under this scope, low-frequency inputs will not produce any coherent output
while high-frequency inputs will determine a synchronous pattern of output actjpityulation bursts We
analyze the effect of the network sig@d) on the parameters of the transfer functigimreshold and slopeWe
found that sigmoidal functions realistically simulate the synchronous output activity of hippocampal neural
networks. This outcome is particularly important in the application of results from neural network models to
neurobiology[S1063-651X99)03809-X]

PACS numbgs): 87.19.La, 87.10-e, 07.05.Kf

Neuronal integration is one of the most important mechaindividually encode information according to the stimulus
nisms of the brain. By its means a considerable amount ofrequency from sigmoidal dependency to band-pass filtering
information is continuously processed in a large number of4,5]. The extent to which these particular transfer functions
internal operations. An intriguing question in neuronal inte-can be extrapolated to the network should be thus experi-
gration is how large populations of neurons encode informamentally investigated. Here we examined the input-output
tion; in particular, how synchronized patterns of neural act€lationship of realistic neural networks using hippocampal
tivity emerge. Synchronization is the basis of stimulusslices from newborn rabbits as an experimental model of

detection, of spontaneous activity driving developmentafynchronous firing6]. The hippocampal circuit has been
processes, and of pathological states such as epilgsy compareql with an autoassociative neural network, showing
The brain contains several nuclei that are involved in specificomputational properties such as content addressable

functions, such as the thalamus, the olfactory bulb, or severépbﬁgq% r)i/rE\Y/]és-[ihlaSltgn;ldee rr]:)ppeor(t:izrsnE?Lis(lllge?cg?rrﬁactwgggsuIt_
cortical areas. Despite their intrinsic properties, these nucl 9 prop g '

; o ei(a)]. In this study, we compute the input-output relationship
constitute ”eufa' networks with Input and output pathwaysof hippocampal networks by stimulating the input pathway at
that interact with each other during processing. It has bee

d that th lecti hronizati f th Bonstant stimulus amplitude but at several frequenf®gs
suggested that the selective synchronization of these aregg,jo simultaneously recording the activity from principal

serves as a mechanism of binding distributed information.g||s (cornu Ammon regions 1 and 2, CA3 and CA1 neu-
into a complete representati¢al. It is, therefore, important yong. The effect of network size is investigated by preparing
to understand how the properties of external stimuli determinisiices of several lengths. We then use the transfer func-
mine the pattern and degree of synchronization within a nettion to estimate the network output by simulating the CA1
work, i.e., its input-output relationship. firing probability (real output using CA3 spontaneous activ-
Historically, the sigmoidal transfer function has beenity as the input signal. We compare the results from simula-
computed from the input-output relationship of individual tion with the network activity recorded in the output area
neurons and subsequently applied to neural network model€A1l).
[3]. A network extension of the sigmoidal dependence is not A schematic representation of the experimental system is
strictly correct since such a generalization assumes homogeepresented in Fig.(h). Hippocampal slice$500-um thick)
neity and linear interactions among cells. In particular, thewere prepared following the standard procedi@k Simul-
input-output relationship from individual neurons is obtainedtaneous recordings at CA3 and CA1 were made from the cell
by applying intracellular current pulses of different ampli- body layer while stimulating the input pathway at the mossy
tudes, a procedure that is not experimentally possible at nefibers[9]. The synchronous network response between CA3
work level. Instead, extracellular stimulation is applied butand CA1 depended on the input frequeri¢¥ig. 2(@)]. This
its strength has not a quantitative physiological interpretasynchronous network response consisted in a population
tion. Recent experimental reports have shown that neurortsurst, which was tightly synchronous in proximal cells and
propagated from CA3recording site 1to CA1 (recording
site 2. Single or repetitive stimulation at 1-6 Hz did not
* Author to whom correspondence should be addressed. Electroninduce a synchronous response whatever the stimulus dura-
address: liset@eucmax.sim.ucm.es tion. Instead, synchronization was systematically elicited
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FIG. 1. (a) Schematic diagram of the hippocampus. Input path-
ways from the cortex made synaptic contacts at the dentate gyrus K12
(DG) and CA3. Stimulation of the input fibers was made at this
level where synaptic connectiofisiossy fibersfrom DG to CA3
were also stimulated. CA3 send its axoffisrward) to CA1 and
CAZ3 properly(backward. Axons from CA1 provide the hippocam-
pal output to the cortex. Recordings were made from Q#&8ord-
ing site ) and CAl(recording site 2 (b) Schematic representa-
tion of the hippocampal slices with the stimulation and recording 0 5 10 15 20

electrodeg1 and 3. InpUt Frequency, f (Hz)

T T T T T

from 9-10 Hz(threshold. It is important to note that this is FIG. 2. (a8 Synchronous response of the hippocampal network
not a problem of frequency coupling between the networkio periodical stimulus. Repetitive stimulation induces synchronous
response and the stimulus. In hippocampal slices, the sympopulation eventgburstg at recording sites 1 and 2 only at frequen-
chronous network response consists of a stereotyped populgies higher than 9 Hz. (b) Coherence versus the input frequency.
tion burst where duration, number of spikes, and interspikélighest coherence values were obtained fat10Hz. In the
interval, remains nearly constafi]. These stereotyped midrange (6<f<9 Hz) large fluctuations were observed.

bursts emerged synchronously between recording sites 1 and

2, which means that the entire hippocampal network fires agetween the coherence standard deviation and the mean
a whole (synchronous outputdepending on the particular (o/w) it is found that for 6<f<9Hz, (o/u)=0.411
conditions of the input, i.e., its frequency. To quantify this =0.123 while for f<6 Hz and f>10Hz (o/u)=0.062
neuronal synchronization the coherence for the simultaneous 0.007. This effect is reported in theoretical simulations of
recordings 1 and 2 was computed. Cohereligg for two  hippocampal networkgL0] and reflects the fluctuating num-
signals is equal to the average cross-power spectrum normdler of active neurons that are recruited by the external stimu-
ized by the averaged power spectrum of the compared sidus in the midrange.

nals, To obtain the network transfer function we computed the
probability of synchronous firing between recording sites 1

|ny|2 and 2 for several input frequencies. Based on the previous

K12:m- (1) analysis we defined synchronization between recording sites

1 and 2 when coherence values were larger than Big
g_(b)]. By using this criteria we computed the probability of

covariance function and is a measure of the similarity of twosynchronous output activity between recording sites 1 and 2,
(f), for every stimulus frequenc§ Data were obtained

signals. Its value lies between zero and one and it estimates

the degree to which phases at the frequency of interest af°m n=11 different hippocampal slices and could be well
dispersed. fitted by a sigmoidal functiofiFig. 3],

We represented coherence between recording sites 1 and
2 against input frequency to quantify the degree of network
synchronization as a function of the stimu[isg. 2(b)]. For
stimulus frequencie$<6 Hz the coherence was near zero
indicating low correlations between the recording sites 1 anavherefy, andA represent the threshold and the slope, respec-
2. On the contrary, frequencies higher than 9 Hz evokedively; f;=8.8£0.1Hz andA=0.9+=0.1Hz. We analyzed
synchronization across the entire hippocampal slice, whiclthe effect of the network siz&N) on the input-output rela-
was reflected in maximal values of coherer(ce0.5. At  tionship by constructing minislices from a 300—25006+
intermediate frequency values between 6—9 Hz, large fluclength. In slices, CA3 and CA1 areas are estimated to have
tuations were detected compared with small and large values) 000 and 16 500 neurons, respectividl§]. Assuming that
of f. If we define the coefficient of variation as the ratio CA3 is a 1000um length, this means that a 3@0n minis-

Coherence is the frequency domain equivalent to the cros

P(f)=17arTom: 2
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FIG. 3. Transfer function froorm=11 hippocampal slices. Data " Firing Rate R2 Sﬁ?gut
can be well fitted by a sigmoidal functidiEq. (2)] wheref,=8.8

+0.1Hz andA=0.9+0.1 Hz.
Simulated Output (Firing Probability P )

lice should contain the order of 3000 neurons. We preparec, o

minislices of a 300, 600, and 10Qam length from CA3 area 0'5‘ .
and of a 2000—250@m length from CA1 area and recorded | )
simultaneously from two different sites. The results are pre-0.04 1

sented in Fig. 4data fromn= 18 minislice3. As can be seen 0 10 20 30 40 50
fo (circles increased, as network size became smaller. This n

means that for small networks the input-output function Real Output (Spontaneous Neuronal Spiking 2)
shifted towards higher-frequency values. In terms of the ac-

tivity this result suggests that smaller networks are more dif- ‘ | I “'I | I H"I ’

ficult to synchronize, a result that is in accordance with ex-
perimental and theoretical reporf42]. In fact, realistic
computational models of hippocampal slices have shown thaw
in networks ofN=25-100 neurons synchronous bursts are’
no longer recorde@13].

On the contrary, the slope of the transfer functid) is o o o %0 20 %
reduced by a factor of 15 a¢is decreaseffFig. 4, triangle$ n
This means that for small network&l5000) the transfer
function becomes more abrupt, i.e., small frequency changes FIG. 5. Simulation of the network output by the sigmoidal trans-
will produce larger variations of output firing probability fer function and comparison with the real output activity recorded at
than for networks oN>15 000. In computer simulation| CALl. 1(a) CA3 spontaneous neuronal activity 1, i.e., the activity
is usually smaller than biological network sizes and steplikg©corded in the absence of stimulus was used as the input signal in
transfer functions are frequently used. Results in Fig. 4 sho e sigmoidal transfer function. To do this we constructed time
that steplike functions have a physiological support for smaIFe”eS from neuronal spiking 1 by computing the firing rate in Hz

networks, though the extension of results based in comput Ry), i.e., the inverse of the interspike intervalib) Schematic
tion with such a function should be carefully justified representatlon of the analysis. Five to ten minutes of spontaneous
) neuronal spiking at CA3recording site 1 was converted into a

time series oh=50-60 lengthfiring rateR) and applied to Eq.2)

Firing Rate R2 (Hz)
1501 ' '

110 thus obtaining the simulated output, i.e., the firing probabifity.
~ 121 —_ The simulated output is then compared to the real output recorded
L {os i at site 2(transformed into firing rat&R2). (c) Simulated output
w2 114 < obtained from Eq(2) using firing rate 1 as the input frequenty
% {106 @ =R. (d) Real output recorded at CA%ite 2. The neuronal spik-
S oy ing 2, which was recorded simultaneously to neuronal spiking 1,
g 104 04 O can be converted into a time series of firing rate 2 or firing prob-
- | ability as well.
5ol 02 Y o .
| |r_1ally, we tested th_e capacity of the network tran_sfer
: : 5 z 5 0.0 function[Eq. (2)] to predict the real pattern of output activ-
8 i i i : ; ity. To perform this test we used the spontaneous firing of
0 5 10 15 20 25 . .3 CA3 neurons as the input signal. The CA3 spontaneous fir-
Network Size, N ing is the activity recorded at site (heuronal spiking Lin

the absence of any stimulus. We converted the neuronal
FIG. 4. Dependence of thresholf,] and slopgA) of the trans-  spiking 1 into a time series by computing the firing rate in
fer function with the network sizéN). Hz (R), i.e., the inverse of the interspike intervaiEg. 5a);
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; ; ; ! ! put signal$ were suprathreshold thus determining an output
: ‘ ' : response. Fof, between 9-20 Hz the sigmoidal function is
shifted towards high-frequency values and, therefore, the
output pattern is almost silent, i.e., the majority of spontane-
ous spiking fluctuations are subthresholds. Cross correlation
was maximum for 3<f,<<8 Hz indicating a strong correla-
tion between the simulated and the real network behavior.

In summary, all these results indicate that transfer func-
tion (2) realistically simulate the input-output properties of
; : hippocampal neural networks and can be used for computa-
0.0 : : tional purposes inan adaptive_ tuning threshold from 3-8 Hz.

) 0 5 10 15 20 Interestlngly, these frequer}mes are in the range of theta
Threshold, f, (Hz) rhythm, i.e., 4-8 H414], which has been found to be opti-
mal for the induction of long-term potentiati¢h5]. A num-

FIG. 6. Correlation between the simulated and the real outpuber of theoretical studies have been carried out to investigate
activity depending on the synchronization threshigjd The maxi-  the storage capacity of the neural networks with a sigmoidal
mum of the cross-correlation function was computed for each valuénput-output relationshipl6]. This connection between ex-
of fy. Results are presented in normalized form. perimental models of memory and their theoretical counter-

parts deserves more attention, especially on the view that
see also the scheme in Fig.(bp. These time series information storage is coded in patterns of activity at 5—12
(R1,Rz,...,Ry) had a length that is equivalent to the numberHz and 40 HZ17].
of spikes(n) in the original signal. We have analyzed epochs  Another important result from this work is that in biologi-
of 5-10 minutes of recording time which gave firing rate cal neural networks synchronizatigim the form of popula-
time series of 50—-60 length. Then, E@) was applied to tion burst3 is encoded by a nonlinear function of the input
simulate the output activity of the hippocampal network byfrequency. On this basis a network filtering capability can be
using firing rate 1 as the input frequendy=R,, thus ob-  proposed, which would determine the existence of two
taining the simulated output time series, i.e., the firing prob-modes of signaling18]. Input frequencies below threshold
ability P, [Fig. 5c)]. The simulated outpuP, was com- (<8 Hz) will not produce any coherent output, having net-
pared with the real output activittheuronal spiking 2 and work activity largely variable. This intrinsic variability is
firing rate 2 recorded at site 2, i.e., from CA1 neurd8g.  found to be important in coding the local features of specific
5(d)]. aread19]. In fact, it has been apparent that the irregularity of

The sigmoidal transfer function characterized by the paa neuronal firing pattern enhances the detection of weak
rametersfy and A reported in Fig. 3 successfully simulate stimulus via stochastic resonarf@®]. On the contrary, input
the output activity of hippocampal slices. To quantify thefrequencies higher than threshold will determine a synchro-
degree of correlation between the simulated and the real oulized pattern of output activity within the netwofk 8 Hz).
put activity, the cross-correlation function from these twoLarge-scale oscillations in this range have been reported in

signals was computed: the visual corte{21], olfactory systerf22], thalamus[23],
and hippocampuf24]. In these systems, 40-Hz oscillations
Ci e [x(t) =) y(t+ 1) —(¥)], (3 have been suggested to serve as a mechanism of binding the

neuronal activity from distributed networkf2,25]. This
means that biological networks should have an internal
mechanism able to both produce synchronized patterns of

comple? .conjug%tet,).?nm andy are tlhe sim.ulated. and drer:]al neuronal activity and preserve the individual firing capacity
output(firing probability), respectively. We investigated the of the neurons. The sigmoidal network function of input fre-

dependence between the maximum of the cross-correlatio ; ; : ;
ency provides a solution to this problem by playing the
function (C7%") and the threshold of the transfer function tlency p P y paying

' ) role of a functional switch between these two operational
(fo) [Fig. 6]. For thresholds ranging from 0—2 Hz and from ,5des.

9-20 Hz simulated and real network outputs were not corre-

lated. In the first interval (& fy<2 Hz), the sigmoidal func- This work is supported by Grant No. 96/2012 from the
tion is shifted towards low-frequency values so low that theFondo de Investigacion Sanitaria. L.M.P. is supported by a
simulated output activity was maximal, i.e., all of the spon-grant from Generalitat Valenciana. We thank G. Ortega and
taneous spiking fluctuations from CA3 cellssed as the in- N. Stollenwerk for helpful discussions.

where < is the inverse Fourier transforni] denotes the
Fourier transform() denotes the mean,]' represents the
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